Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils

نویسندگان

  • Renbin Zhu
  • Qing Wang
  • Wei Ding
  • Can Wang
  • Lijun Hou
  • Dawei Ma
چکیده

Most studies on phosphorus cycle in the natural environment focused on phosphates, with limited data available for the reduced phosphine (PH3). In this paper, matrix-bound phosphine (MBP), gaseous phosphine fluxes and phosphorus fractions in the soils were investigated from a penguin colony, a seal colony and the adjacent animal-lacking tundra and background sites. The MBP levels (mean 200.3 ng kg(-1)) in penguin colony soils were much higher than those in seal colony soils, animal-lacking tundra soils and the background soils. Field PH3 flux observation and laboratory incubation experiments confirmed that penguin colony soils produced much higher PH3 emissions than seal colony soils and animal-lacking tundra soils. Overall high MBP levels and PH3 emissions were modulated by soil biogeochemical processes associated with penguin activities: sufficient supply of the nutrients phosphorus, nitrogen, and organic carbon from penguin guano, high soil bacterial abundance and phosphatase activity. It was proposed that organic or inorganic phosphorus compounds from penguin guano or seal excreta could be reduced to PH3 in the Antarctic soils through the bacterial activity. Our results indicated that penguin activity significantly increased soil phosphine formation and phosphorus contribution, thus played an important role in phosphorus cycle in terrestrial ecosystems of maritime Antarctica.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils.

Matrix-bound phosphine (MBP) is a general term used to indicate non-gaseous reduced phosphorus compounds that are transformed into phosphine gas upon reaction with bases or acids. Antarctic seabird guanos and ornithogenic soils were used as materials to compare the different digestion methods for transforming matrix-bound phosphine into phosphine gas. The results demonstrated that more phosphin...

متن کامل

Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants

The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy met...

متن کامل

Nitrous oxide emissions from tundra soil and snowpack in the maritime Antarctic.

The nitrous oxide emissions were measured at three tundra sites and one snowpack on the Fildes Peninsula in the maritime Antarctic in the summertime of 2002. The average fluxes at two normal tundra sites were 1.1+/-2.2 and 0.6+/-1.7 microg N2O m(-2)h(-1), respectively. The average flux from tundra soil site with penguin dropping addition was 3.7+/-2.0 microg N2O m(-2)h(-1), 3-6 times those from...

متن کامل

Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica.

In the Ross Sea region of Antarctica, ornithogenic soils form on land under Adélie Penguin rookeries. Compared with mineral soils of the Ross Sea region, ornithogenic soils are generally high in microbial biomass, organic carbon, and total nitrogen and phosphorus, with high electrical conductivity and large variations in pH. The objective of this study was to assess the bacterial composition of...

متن کامل

Plant and Bird Presence Strongly Influences the Microbial Communities in Soils of Admiralty Bay, Maritime Antarctica

Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014